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The problem of uniform flow past a flat plate whose surface has a constant velocity 
A U opposite in direction to that of the mainstream is considered for large values 
of the Reynolds number R. In  a previous communication (Klemp & Acrivos 
1972) it  was shown that, if the region of reverse flow which is established next to 
the plate as a consequence of its motion is O(R-*) in thickness, the appropriate 
laminar boundary-layer equations have a solution provided h < 0.3541. Here 
the analysis is extended to the range h > 0.3541, which cannot be treated using 
a conventional boundary-layer approach. Specifically, it  is found that for 
h > 0.3541 the flow consists of three overlapping domains: (a) the external 
uniform flow; ( b )  a conventional boundary layer with reverse flow for xs < x < 1, 
where x, refers to the point of detachment of the $ = 0 streamline and x = 1 is 
the trailing edge of the plate; and ( c )  an inviscid collision region in the neighbour- 
hood of x,, having dimensions O(R-4) in both the streamwise and the normal 
direction, within which the reverse moving stream collides with the uniform 
flow, turns around and then proceeds downstream. It is established furthermore 
that x, = 0 for 0 < h < 1 and that xs < 0 for h > 1. 

Also, detailed streamline patterns were obtained numerically for various 
A’s in the range of 0 < h < 2 using a novel computational scheme which was 
found to be more efficient than that previously reported. Interestingly enough, 
the drag first decreased with A, reached a minimum a t  h = 0.3541, and then 
increased monotonically until, a t  h = 2, it  was found to have attained essentially 
the value predicted from the asymptotic h -+ co similarity solution available in 
the literature. Thus it is felt that the present numerical results plus the two 
similarity solutions for h = 0 and for h+co fully describe the high-R steady flow 
for all non-negative values of A. 

1. Introduction 
Steady laminar flows a t  high Reynolds numbers R containing regions of reverse 

flow constitute an important class of viscous flow problems for which, in general, 
a quantitative theoretical description is still lacking. For example, when separa- 
tion occurs in the flow past a solid body, the surface streamline ($ = 0 )  no longer 
conforms to the body contour beyond the point of detachment, with the result 
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xs * u=-- Iu X = I  

FIGURE 1. A sketch of the region of closed streamlines for a plate 
with a reverse moving surface. 

that conventional methods of boundary-layer analysis no longer apply. This is 
especially true wherever, as is often the case, the surface streamline is displaced 
an order-one distance from the body downstream of separation, since the 
external flow thereby encounters an effective body whose geometry is a priori 
unknown. 

In  what follows, we shall consider the admittedly rarer situation in which the 
region of reverse flow is confined within an O(R-4) distance from the solid body. 
This case is of course much simpler to analyse since the structure of the inviscid 
flow remains unaffected, to a first approximation, by the presence of separation. 
Consequently, the pressure that is impressed on the boundary layer by the 
external flow can be determined over the whole length of the body surface 
(excluding Iocally singular regions) on the basis of a conventional inviscid 
analysis for flow past the given body contour. 

The particular problem on which we shall focus our attention is depicted in 
figure 1 and involves the high Reynolds number uniform flow past a stationary 
flat plate of finite length 1 whose surface has a constant velocity hU opposite in 
direction to that of the mainstream. (U is the velocity of the undisturbed flow 
and R = Ul/v is the Reynolds number, with v being the kinematic viscosity of the 
fluid.) We shall seek to determine the steady flow pattern when R 3 1, on the 
assumption, based on the numerical solutions of the full Navier-Stokes equations 
by Leal & Acrivos (1969), that the region of reverse flow remains within an 
O(R-4) distance from the plate. In  other words, we shall be dealing here with a 
moving-wall boundary-layer problem with zero pressure gradient, which, in- 
cidentally, has a variety of physical apphations, e.g. in the extrusion of plastics. 

In  a previous communication (Klemp & Acrivos 1972, henceforth denoted by 
I), numerical solutions to the boundary-layer equations were presented for values 
of the dimensionless surface speed h in the range 0 < h < 0.3541. (Here h 
replaces the variable 8 in I since our analysis will not be restricted to small values 
of this parameter.) For the cases considered in I, detachment and reattachment 
of the 9 = 0 streamline took place a t  the leading and at the trailing edge of the 
plate, respectively, and, as expected, the thickness of the region of reverse flow 
increased monotonically with A. Also, in this range of A, the total drag decreased 
monotonically. 

A significant feature of the analysis developed in I is that near the leading 
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edge, i.e. as x-+ 0+, the boundary-layer equations reduce via a similarity trans- 
formation to the familiar Blasius equation 

2P” + PP” = 0, 
with boundary conditions 

(l.1a) 

P(0) = 0, F’(0) = - A ,  F’(co) = 1. ( 1 . l b )  

Surprisingly, solutions to the above were found to exist only for h < A* = 0.3541, 
and hence the scheme developed in I failed when h exceeded that ‘critical’ 
value A*. 

This failure to obtain solutions to the boundary-layer equations for h > A* 
could be explained, of course, by supposing that viscous effects are no longer 
confined to a thin, O(R-)) layer adjacent to the plate. Nevertheless, we do recall 
that when h+m, or alternatively when the plate surface velocity is kept fixed 
but the stream speed is reduced to zero, a solution of boundary-layer type still 
exists (cf. Sakiadis 1960) in which the boundary layer grows upstream, starting 
from the trailing edge. In  fact, the boundary-layer equations again reduce to 
(1. I a)  but with boundary conditions 

P(0)  = 0, p’(0) = 1, p’(o0) = 0. 

Consequently it seems reasonable to suppose that the boundary-layer simplifica- 
tions would apply for intermediate values of h given that they are known to 
remain valid for h < A* and h B 1. Further support is provided for this argument 
by the numerical solutions in I ,  which reveal no rapid increase in the boundary- 
layer thickness as h+h*. 

The approach which we shall presently pursue assumes that the failure to 
obtain a solution for h > A* results not from the breakdown of the boundary- 
layer approximations over the length of the plate, but rather from the fact that 
the flow near the leading edge does not conform to the similarity transformation 
leading to (1.1). Of course, if the similarity transformation is not valid immedi- 
ately downstream of the point of detachment x =  x,, the boundary-layer 
approximations inherent in (1.1) must also cease to apply in the vicinity of x,. 
With this in mind, we shall develop solutions for h > A* in which the conven- 
tional boundary-layer structure is altered by the presence of an inviscid region 
surrounding the point of detachment and having O(R-8) dimensions in both the 
streamwise and the normal direction. Within this inviscid domain the main- 
stream collides with the reverse flow which is returning along the surface of the 
plat,e. The colliding streams are then deflected away from the plate and, in the 
process, the reverse flow is turned and leaves the inviscid region in the mainstream 
direction. The dividing streamline remains within an O(R-*) distance from the 
plate and thus the boundary-layer equations apply downstream of x,. In  the 
present investigation the entire flow structure will be described in detail. Also, it 
will be demonstrated that appropriate solutions exist in each region and that the 
required matching conditions between regions are satisfied. 

In  seeking solutions valid over the entire range 0 < h < 00, we re-emphasize 
that, as mentioned earlier, the boundary layer extends indefinitely far upstream 
in the limit h -+ 00. For this reason, if I < h < co, one would certainly expect that 
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the reverse flow would carry enough momentum to penetrate upstream of the 
leading edge. This implies, of course, that the point of detachment would then 
lie a t  some x = x, < 0. Indeed, we shall show in what follows that a self-consistent 
analysis can be developed along these lines which allows us to determine the 
steady flow for R 9 1 over the whole spectrum of values of the parameter A. 

Before proceeding with this new analysis for dealing with the case h > A*, we 
shall re-examine in the next section the solution in the range 0 < h < A*, already 
considered in I, in order to introduce a different numerical approach for solving 
the boundary-layer equations with flow reversal which we found to be consider- 
ably superior to that presented in I. In  $3, we shall reconsider briefly (1.1) and 
shall show that it admits two solutions for 0 < h < A* of which only one, however, 
correctly describes the flow pattern near the leading edge of a finite flat plate. 
I n  $4, we shall provide a detailed analysis of the flow structure for h > A* and 
finally, in $5, we shall present numerical solutions based on this analysis. 
Although these solutions apply, of course, only to the moving-wall boundary- 
layer problem of figure 1, they contain a number of novel features which, it is 
hoped, may also exist in other high-R steady flow problems involving flow 
reversal. Thus the present analysis may be of interest within the wider context 
of boundary-layer flows with separation. 

2. Solutions for 0 < h < A* = 0.3541 

When the surface velocity parameter h lies in the range 0 < h < A*, a region 
of closed streamlines is formed next to the plate (cf. figure 1) in which the surface 
streamline (@ = 0) detaches a t  the leading edge (x = 0) and reattaches at the 
trailing edge of the plate. Owing to a discontinuity in the boundary conditions 
along y = 0, the boundary-layer equations become locally singular at  these two 
points, but otherwise, as shown in I, they remain valid throughout the boundary 
layer. Near the leading edge, this local singularity can be removed by a standard 
transformation of co-ordinates which takes into account the fact that, as x+ O+, 
the flow pattern depicted in figure 1 must be of a self-similar type. Thus, defining 

$(x, y) = (x/R)t  f ( x ,  y), r = Y/x*, with Y = R$y, (2.1) 

we have for the dimensionless form of the boundary -layer equations 

f,t +f, fz ,  -f&, = (2XF1(2.f?/?/, +ff,,>7 (2.2) 

with boundary conditions 

(2.3) i 
f ( x ,  0, t )  = 0, f,(x, co, t )  = 1 for all x > 0, 

f,(x,O,t) = - A  for 0 < x < 1, f,,(x,O,t) = 0 for x > 1, 

f,(O,r,t) = F'(v),  where F(v)  satisfies (1.1). 

In  I, numerical solutions were obtained by solving the steady-state form of 
(2.2) separately in the forward- and in the reverse-flow portions of the boundary 
layer by integrating the equations in each domain in the direction of the flow. 
To generate solutions in this manner required an iterative procedure in which the 
position of the u = 0 curve separating the two regions was adjusted until the 
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shear stress became continuous across this line. Although this technique 
produced valid steady-state solutions, there is no unique procedure for adjusting 
the u = 0 curve after each iteration and convergence cannot be rigorously 
proved. I n  contrast, we shall obtain solutions here by integrating the time- 
dependent boundary-layer equations until steady state is achieved. The 
advantage of this approach is that, since the time-dependent equations are 
hyperbolic in the streamwise direction, they can be stepped forward in time using 
centred finite differences for the spatial derivatives in x. Thus a finite-difference 
scheme can be constructed which is stable regardless of the sign of u; information 
is freely transmitted in either direction and an iterative procedure which is based 
on locating the position of the reverse-flow region is not required. 

In  solving the time-dependent equation (2.2) an initial condition is needed in 
addition to the boundary conditions (2.3). This initial condition is, of course, 
somewhat arbitrary since the primary interest here lies in determining the 
steady-state solution. An obvious choice is f,(x, r ,  0 )  = 1 but another possibility 
is to let 

f, (x,7,0) = P’(r), (2.4) 

which assumes that the solution to (1.1) applies initially throughout the boundary 
layer. Both of these initial conditions were tested and found to produce the same 
steady-state results although convergence to the steady state was achieved much 
more quickly using (2.4). This to be expected since, as shown in I, the steady- 
state solution does not deviate substantially from P(7) over the forward portion 
of the plate. 

To obtain the finite-difference solution of (2.2)-(2.4), second-order centred 
differences were used for all spatial derivatives and the equation corresponding 
to (2.2) was stepped forward in time by means of a leapfrog scheme for the time 
derivative. Of course, since the coefficient multiplying the right-hand side of 
(2.2) tends to infinity as x+O, an explicit scheme would have required a 
prohibitively small time step in order to satisfy the linear stability criterion, and 
hence (2.2) was solved using an implicit representation for terms containing the 
7 derivatives. Specifically, with ZL =f, being the variable which was actually 
stepped forward in time, (2.2) was recast into the finite-difference form 

with initial and boundary conditions 

4% 7,O) = P’(7), f(X, 0, t )  = 0, 4x3 4 t )  = 1, 

u(x,:O,t) = - A  for 0 6 x < 1, u,(x,O,t) = 0 for x > 1. 

Here, the difference operators are defined by 
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with q5 being the appropriate dependent variable, the independent variable 
and nAE the number of grid intervals over which the operation takes place. 

The downstream boundary x = xB was located five grid points beyond the 
trailing edge of the plate. Here, the x derivatives were replaced by one-sided 
difference operators and, to maintain stability, the boundary value in the aulax 
term was time averaged (Elvius & Sundstrom 1973), such that 
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+ u ( x ~ , ~ J ,  t -  At)]  -u(xB-Ax, 7, t)). (2.8) 

Also, the value of L in (2.6) was kept fixed a t  6, after establishing that test runs 
with L = 6 and L = 10 gave nearly identical results, and the grid intervals Ax 
and A7 were set equal to 0.02 and 0.1, respectively. Furthermore, to ensure linear 
stability for disturbances propagating in the x direction, At was fixed at 
2.5 x 10-3. In  this way, convergence of the numerical solution to five decimal 
places was achieved within a dimensionless time of about 6.  

In  order to suppress the growth of nonlinear instabilities, a smalI damping 
term proportional to a2u/ax2 was added to (2.5); when written in Dufort-Frankel 
form (averaging of the middle point in time), this also suppressed the time 
splitting of the computational mode in the leapfrog scheme. The coefficient of 
this second derivative was set at about a value which was small enough 
not to affect the steady-state results in any significant way. 

Because of the implicit representation of all the terms involving 7 derivatives 
in (2.5), all the values of u in a given column had to be determined simultaneously. 
Thus the equationsrepresented by (2.5) were stepped forward in time by sweeping 
through the flow field in the x direction and solving implicitly for u at each value 
of x by inverting a tridiagonal matrix. 

The solutions which were obtained by the procedure just described for 
h = 0-1 ,O.Z and 0.3 were compared with those computed previously and depicted 
in figures 3 and 4 of I. In  all cases, the differences between the two sets of results 
with regard to such characteristic features of the flow as the thickness of the 
reverse-flow region, the position of the vortex centre and the associated minimum 
value of the stream function, the wall shear stress, etc. were less than a few per 
cent. Such differences were to be expected of course since the steady-state 
iterative procedure employed in I incorporated a refined mesh near the point of 
reattachment, but made use of only a first-order-accurate resolution of the 
x derivatives. 

In  view of the close agreement between the present solutions and those reported 
in I ,  these will not be reproduced here. It is instructive though to consider the 
flow structure for h = A* = 0.3541, the maximum value of the surface velocity 
parameter for which a solution to (1.1) exists. Figure 2 is a sketch of the closed- 
streamline region, which is seen to be qualitatively similar, in all respects, to 
those with lower values of A. Indeed there is no evidence to suggest that, if h were 
to exceed A* by a very small amount, the thickness of the boundary layer would 
increase dramatically, or that the boundary-layer simplifications would cease to 
apply. I n  fact, i t  would appear that the only portion of the flow which would 
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FIGURE 2. The structure of the closed-streamline region when 
h = A* 0.3541. 

suffer a fundamental modification as h exceeded A* would be that near the 
leading edge of the plate, where the similarity transformation (2.1) would then 
no longer hold. 

3. Re-examination of the similarity solution 
Before turning to the case h > A* we wish to reconsider here briefly certain 

properties of (l.i), since it is the failure of this system to admit a solution when 
h exceeds the critical value 0-3541 which appears to be responsible for the fact 
that the finite-plate problem can no longer be described solely on the basis of the 
boundary-layer equations when h > A*. Some of the features of the solution for 
0 < h < A* were described previously in I, where a physical justification was given 
for the observed monotonic decrease in the wall shear stress, proportional to 
P”(O), with increasing A. In  the course of the present investigation it was found, 
however, that the solution discussed in I is not unique and that another perfectly 
acceptable solution of (1.1) exists for h in the range 0 < h < A*. 

This second solution was found by solving (1.1) as an initial-value problem 
(and not as a boundary-value problem as was done in I) with P”(0) as a para- 
meter. The resulting curves of F’(co) vs. P”(0) for various values of h are plotted 
in figure 3, from which it is evident that, for each h in the range 0 < h < A*, 
two solutions exist satisfying the boundary condition F’(co) = I.  It is 
moreover easy to show that both of these solutions meet the additional require- 
ment that the vorticity, proportional to P’’(T), should decay exponentially 
as r-+co. Hence both sets are acceptable solutions to the boundary-layer 
equations. 

Of these two families of solutions, the one described in I as well as by other 
investigators (Leal & Acrivos 1969; Robillard 1971) corresponds to the larger 
value of the wall shear stress and, as h -+ 0, converges uniformly to the Blasius 
function. This is in contrast to the second solution, for which the boundary-layer 

24 F L M  76 



370 J .  B. Klemp and A .  Acrivos 

1.5 

0.5 

0 0- 1 0-2 0.3 0-4 0.5 

F’( 0) 

FIGURE 3. The solution of (1.1) as an initial-value problem. 

thickness increases without bound as h+O. In  some respects, therefore, this 
second solution is analogous to the additional solution to the Falkner-Skan 
equation found by Stewartson (1954) when the wedge-angle parameter p lies in 
the range -0.1988 < /3 < 0, since as p+O- this additional solution does not 
converge to the Blasius function and its associated boundary-layer thickness 
becomes infinite. One interesting difference between the two cases, however, is 
that, a t  p = - 0.1988, where the two branches of the solutions to the Falkner- 
Skan equation merge, the wall shear stress vanishes, whereas in the present 
problem P”(0) is still positive when h = A*. 

To illustrate further the nature of these two solutions for a given A, we present 
in figure 4 plots of the corresponding tangential velocity and shear stress profiles, 
proportional to F’(7) and P”(7) respectively, for h = 0.3. As can be seen, in each 
case P’(7) increases monotonically across the boundary layer while F”(7) reaches 
a maximum at that value of 7 where the stream function vanishes, i.e. along the 
line of contact between the recirculating flow and the external stream. The 
solution having a lower wall shear stress is characterized, however, by a 
substantially larger boundary-layer thickness which, as mentioned above, 
increases without bound as A+ 0. 

An attempt was also made to obtain the steady-state flow field for the moving- 
wall boundary-layer problem using as conditions at x = 0 and at t = 0 in (2.3) 
and (2.4) respectively the function F’(7) from the second solution of (1.1) referred 
to above. Interestingly enough, the resulting flow structure converged to that 
found earlier except, of course, at x = 0, where it was required to conform to 
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FIGURE 4. The two solutions of (1.1)  for h = 0.3. -, the solution 
obtained in I; - - - , the new (parasitic) solution. 

the second solution of (1.1). Thus i t  would appear that his second solution is in 
some sense parasitic in that only the first solution, i.e. the one considered in I, 
with the larger wall shear stress and the smaller boundary-layer thickness, 
correctly describes the flow pattern near the leading edge of a finite flat plate. 

At any rate, it  is quite clear from figure 3 that (1.1) can have no solution for 
h > A* and P”(0) 2 0. 

4. The structure of the flow for h > A* 
It is instructive at this stage to examine briefly the possibility that the flow 

for h > A* could still be determined using only the boundary-layer equations but 
with the point of detachment xs located ahead of the leading edge. At first glance, 
this line of inquiry appears promising because, as mentioned in 5 1, i t  would seem 

24-2 
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logical to suppose that, when h becomes large, the reverse flow will carry enough 
momentum to be able to penetrate into the region upstream of the plate and 
thereby cause the surface streamline $ = 0 to detach a t  x, < 0. Nevertheless, it  
quickly becomes apparent that this possibility has to be abandoned since an 
analysis of the boundary-layer equations near the point of detachment 
x = x, reveals that the transformation (2.1) will still apply, with 7 = Y/(x - x,)!~, 
and that, as x-fx,, the function P will still satisfy (1.1) but with boundary 
conditions P(0)  = 0, P”(0) = 0 and P’(co) = 1. Clearly, P’(7) = 1 is the only 
solution of such a system. We conclude, therefore, that when h > A* the region 
where the reverse flow first comes into contact with the mainstream must assume 
a structure which can no longer be described on the basis of the boundary-layer 
equations. 

In  view of the above, we are led to propose a flow pattern which consists 
basically of three regions: the undisturbed stream ahead of the point of detach- 
ment x = x,, a boundary layer similar to that discussed in $2 for x > x8, and, 
separating the two, a collision region in the neighbourhood of x, within which the 
reverse flow turns around sharply and then moves downstream. In  this collision 
region, whose structure is sketched in figure 5, the lateral and longitudinal length 
scales are both O(R-*) -this is necessary if the solution downstream of the 
collision region is to match with that in the boundary layer - and hence the 
motion is here inviscid with vorticity being conserved along each streamline. 
Specifically, with $ the stream function, w ( $ )  the vorticity, X = Ri(x - x,) and, 
as before, Y E R*y, we have that 
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V2@= - w(llr), (4.1) 

where w ( $ )  is the vorticity of the fluid as it enters this collison region from its sur- 
rounding boundaries.? Of course, since the uniform strealm is irrotational, w = 0 
for $ > 0, while for $ < 0 the vorticity can be obtained by differentiation 
from u(x,, Y, t )  = - u, ( Y ,  t ) ,  which, as shown in figure 5, refers to the longitudinal 
velocity component of the reverse flow near x,, i.e. within that portion of the 
overlap domain between the boundary layer and the collision region where 
u < 0. Thus, if u, ( Y ,  t )  is known from the solution of the boundary-layer equa- 
tions for x: > x,, w ( $ )  is everywhere specified and (4. l) can be solved in principle. 
Fortunately though, as will be seen, a solution of (4.1), which would be difficult 
to obtain owing to its nonlinearity, is not required for the purposes of this first- 
order analysis. 

We now establish a useful result which follows immediately from the fact that, 
as X-too, the solution to (4.1) must match with that in the boundary layer, i.e. 
as X - f c o ,  the streamlines in the X, Y plane must become horizontal. Therefore 
if, as shown in figure 5,T refers to the location of the u = 0 curve (or the curve 
of minimum $) as x+xs+, we see from (4.1) and the condition a$/aY = 0 at 
Y = Y, that, as X - f o o ,  $ becomes an even function of Y - 7  for 0 < Y < Z U ,  
and linear in Y for Y > 2Y1. Hence we conclude that, in the overlap domain 

It can easily be shown that, to O(R-%),  the flow within the collision region can be 
assumed steady even if the flow in the boundary layer is time dependent. 
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FIGURE 5 .  The flow structure in the collision region. 
( a )  0.3541 < A < 1. ( 6 )  1 < h < 00. 

between the collision region and the boundary layer, u must be odd in Y - & 
for 0 < I’ < 21; and uniform for Y > SY,, i.e. 

(4.2) i i II uc( y’ t ) ’  Y 2 q, 

o <  Y G I ; ,  
?“(xs, Y , t )  = uc(2y,- Y , t ) ,  5 < Y 6 2Y,, 

which will then serve as the appropriate boundary condition for the solution of 
the boundary-layer equation for x > xs. By using the boundary conditions (4.2), 
as outlined above, solutions to the boundary-layer equations valid downstream 
of xs can then be obtained without solving for the flow within the inviscid collision 
region. Evidently, however, it  is not possible to locate the point x, uniquely 
solely on the basis of the foregoing analysis, because one could assume in principle 
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any value x, < 0 within some reasonable range and then compute a seemingly 
respectable solution vaIid downstream of that point. This indeterminacy must 
of course be resolved before meaningful numerical solutions can be obtained and 
hence certain features of the flow within the collision region will first be studied 
in detail in order to derive the appropriate criteria for locating the point of 
detachment x,. 

To this end, let us consider the collision between two inviscid streams A and B, 
and in particular the local solution of the inviscid flow equation near x,, the 
point of bifurcation of the @ = 0 streamline (cf. figures 5a, b). I n  what follows, 
we shall suppose t,hat a t  upstream infinity stream A has a uniform velocity 
uA = I in the x direction, while a t  downstream infinity the corresponding 
velocity components of stream B are 

ug = - y + w o y ,  v = 0, (4.3) 
where y and wo are constant non-negative parameters. Also, the undisturbed 
pressure of both streams is taken to be zero. Thus stream A is everywhere 
irrotational while B has a constant vorticity equal to - wo. We wish to determine 
the necessary conditions for the existence of a steady solution to the inviscid 
equations in the neighbourhood of xs; this requires, of course, that the pressure 
be continuous along the streamline ~ = 0 separating the two streams. 

It is easily seen, first of all, that near x,, the origin of our co-ordinate system, 
the streamline @ = 0 will be either vertical, as in figure 5 (b) ,  or have the form of 
a cusp I' - Xa,  with a > 1, as in figure 5 (a). The remaining possibility, a wedge 
of finite angle, can immediately be eliminated because x, is then a stagnation 
point for both streams and the pressure variation along @ = 0 will be always 
different for A and B no matter what the value of the wedge angle and of wo. 
To determine, however, which of the two possibilities, i.e. a vertical line or a 
cusp, applies, i t  is necessary to consider separately the cases wo = 0 and wo > 0. 

Case 1 : wo = 0. Here, the flow depicted in figure 5 (b)  is certainly possible, but 
only if y = 1 since x, is a stagnation point for both streams. As for the possibility 
of the streamline @ = 0 being a cusp near x , ~ ,  this can be eliminated by the 
following argument. 

Let us consider the local solution of Laplace's equation V2@ = 0 for S > 0 and 
0 < Y < Xa (a > 1) satisfying the boundary conditions @ = 0 at I' = 0 and 
at Y = Xa. We seek a solution of the form 

@ = H(X)sinnY/Xa, (4.4) 
where by substitution we have that, to first order as X+O, 

The solution of the above which vanishes as X+ 0 is 

X2H" - n2XZ@-dH = 0. 

K being a modified Bessel function of the second kind. Thus, as X-tO, and 
noting that a > 1, 
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which shows that the velocity vanishes exponentially inside the cusp. In  contrast, 
as will be seen below in (4.10)) the speed along the top side of the 9 = 0 streamline, 
i.e. the part in contact with stream A,  varies algebraically and hence a pressure 
match across the dividing streamline cannot be achieved under these conditions. 

M7e conclude therefore that, as was to be expected, a steady flow pattern can 
result from the collision of two uniform streams only if both have the same speed. 

Case 2: w, > 0. Again, the flow shown in figure 5 (b) is possible but this requires 
that, once more, y = 1. In  contrast to the previous case, however, it  will be 
shown that a steady flow can exist for y < 1 with the dividing streamline being 
a cusp. 

To begin with, we note that, for 0 < Y < Xa, the appropriate equation is 
now 029 = w,, which as X -+ 0 has the particular solution 

@ = -&do{ YS" - Y2} (4.6) 

in addition to (4.4) and (4.5). Thus we have to first order as X-+O that qB, the 
speed of stream B along the @ = 0 streamline, is 

qs = &lJoXa, (4.7) 

plus an exponentially small term arising from the homogeneous solution (4.5). 
On the other hand, for stream A ,  which is irrotational, we need to solve 

Laplace's equation subject to the conditions 

v = auXa--l a t  Y = X a  ( X  2 0)) v = 0 at Y = 0 (9 < 0).  (4.8a,b) 

However, to a first approximation we can impose (4.8a) on the + X axis, rather 
than a t  Y = X a .  Thus, on using complex-variable theory, we readily obtain 

u-iv = a, +a,( - x ) a - l + . . . ,  x = X + i Y ,  (4.9) 

a, and a, being constants. It follows then that 

u = a, +a, ( - X)a- l+.  . . , v = 0 on the negative real axis, 

u = a.,+a,9a-1cos(a-l)n+..., v = -a1Xa-lsin(a-l)n+... 

on the positive real axis, 
where, in view of (4.8), 

The above ceases to apply when a is an integer, in which case za-l is to be replaced 
by za-l In z and the constant a, re-evaluated. 

When a is not an integer then, we obtain for qa, the speed of stream A along the 
dividing streamline, 

qa = a0{I-aSa-1cot(a-i)n+ ...). (4.10) 

But, in view of Bernoulli's equation, continuity of pressure across the 9 = 0 
streamline requires that 

4;-(1% = 1 - 7 2 ,  (4.11) 

which, on account of (4.7)) can be satisfied only if 

a, = -ao a/sin (ci - 1)n. 

uo = (1--y2)*, i.e. y < 1, and if CL = 8, p, ..., etc. 
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Higher-order terms in the solution can be obtained in a straightforward 
manner by expanding ( 4 . 8 ~ )  in a Taylor series about Y = 0. Thus, when a = 8 
for example, the velocity of stream A is given by 

u-iv = a + a , ( - z ) ~ + a , ( - z ) + a , ( - z ) ~ +  ..., 
while the equation for the dividing streamline is 

Y = X Q ( l + b , X + b 2 X 2 +  ...). (4.12) 

Substitution of the above in (4.8) with the higher-order terms included, as well 
as in (4.7) and (4.11), then leads to 

= (1-y2)$, a, = -$(l-y2)$, a --16 - ( 1-  y2)$, a3 = Qb, - %( 1 - y2)+ etc., 

with similar results for a = Q ,  Q, etc. Thus we see that, if y 6 1, local solutions 
can be constructed which, as expected, will contain many parameters, e.g. the 
bk’s in (4.12), whose value can only be obtained from the overall solution to the 
problem. Of course, i t  is not clear a t  this stage of the analysis whether, in fact, an 
infinite number of possible local solutions will exist, corresponding to a: = 8, Q ,  
etc., or whether a single a: can be selected from this set with a = 8 being the most 
probable choice, but this will not affect the conclusions that follow. 

Although admittedly incomplete in many respects, the arguments presented 
above lead to a criterion for locating xs, the point of detachment of the $ = 0 
streamline in the moving-boundary problem, to which we shall now return. 

Let us suppose first of all that x, < 0. In  this case, the reverse flow near the 
line of symmetry Y = 0 has zero vorticity owing to the boundary condition 
(au/aY),,, for x < 0, and hence the term o,, in (4.3) is also zero. In  view of the 
preceding discussion (case l), a steady solution within the colIision region is 
possible only if y = u,(O, t) = 1. Consequently, since uc(O, t) < h if x, < 0, we 
can immediately conclude that detachment will occur ahead of the leading edge 
only if h > 1, and that x, will be located a t  the point where the reverse-flow 
velocity along the line of symmetry Y = 0 has been decelerated to such an extent 
that u, (0, t) = 1. 

On the other hand, if h < 1, xs will either coincide with or lie within 
an O(R-4) distance from x = 0. In  this case, y = u,(O, t) = h < 1 and 
wo = (au,/aY),=, > 0, and hence the necessary conditions for the existence of a 
steady solution within the collision region (case 2) are satisfied. Of course, the 
flow structure within the collision region will now become rather complicated 
owing to the existence of a velocity discontinuity across the $ = 0 streamline 
[cf. (4.1 l)], which in turn will require the presence of an O(R-f)  thick boundary 
layer along this detached streamline. Similarly, an O(R-f) boundary layer will 
exist along Y = 0. These complications do not however affect the present first- 
order analysis. 

5. Numerical solutions for h > A* 
In  view of the results of the previous section, it is now possible to develop a 

solution to the boundary-layer equations for h > 0.3541 without having to solve 
for the flow field within the collision region. In  fact, it  is only necessary to alter, 
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at x = x,, the numerical scheme described in $ 2 ,  in order to account for the 
boundary conditions which result from the presence of the collision region. 

To begin with we note that, in this range of A, solutions will no longer have a 
similar form in the vicinity of x, and thus the boundary-layer equations are most 
conveniently solved in the conventional x, Y framework. I n  dimensionless 
variables these equations have the familiar form 

where V is the transverse velocity scaled by Ri. With Y as the transverse 
co-ordinate in place of 7, the numerical scheme outlined in $2 can be simplified 
since it is not necessary to use an implicit representation for terms containing 
Y derivatives. The solution can then be explicitly stepped forward in time using 
the following finite-difference equations: 

where the finite-difference operators are defined by (2.7). Also, at the down- 
stream boundary, x derivatives are represented by one-sided differences with 
au/az specified as in (2 .8) .  

It is worthwhile to mention that, in the present explicit scheme, the magnitude 
of the time step that can be used is limited by the mesh size Ax, which is small 
compared with A Y .  Thus convergence to a steady-state solution could be 
accelerated by incorporating an implicit representation in the x direction for 
(5.1). The numerical procedure would then be similar to the implicit scheme 
outlined in $2, the only difference being that the implicit direction would be 
switched from 11 to x.  Such an implicit formulation was not adopted here, 
however, since the computer time requirements for the explicit scheme were not 
excessive. 

The integration of (5 .2 )  begins by assuming that uniform flow exists throughout 
the domain a t  t = 0. Thus the initial and boundary conditions are 

I (5.3) 

u(x,  Y,O) = 1, V ( z ,  Y,O) = 0, 
u(z,O,t) = - A  for 0 < x < I, au(x, 0, t )pY  = 0 for x < 0, x > 1, 

V(x ,  0, t )  = 0, u(x,  co, t )  = 1, 

uc(2 Y,- Y ,  t ) ,  Y, < Y < 2&, 

[I ,  Y 2 BY,, 
u(x,, Y, t )  = J 

where, as discussed earlier, uc( Y ,  t )  (0 < Y < Yl) is uniquely determined from 
the reverse flow entering the collision region between Y = 0 and Y = &. The 
numerical procedures for obtaining u, are outlined below. We have already 
shown that, for h < 1 and at steady state, this inviscid collison region must be 
located at  the leading edge of the plate and consequently the domain of integra- 
tion for the boundary-layer equations also begins a t  x = x, = 0. Initially 
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u(x,, Y,O) = 1, the 'collision' region is not yet present, and (5.2) are stepped 
forward in time in the usual manner. After a time step has been completed, it 
is necessary to determine whether a collision region has been established or, if it is 
already present, how it has been altered during that time step. This in turn is 
determined by the nature of the region of reverse flow adjacent to the plate as 
x-+x,. Thus, withreference to (4.2), theprofileu,(Y,t) = -u(x,,Y,t) (0 < Y < &) 
a t  the new time level is derived by extrapolating the tangential velocity to x = x, 
using computed values a t  the first two grid points downstream of xs. This pro- 
cedure for generating u, ( Y ,  t )  begins at the plate and is continued for increasing Y 
until a negative value of u, is encountered. (Of course, if the extrapolated u, at 
the first grid point above the leading edge of the plate is negative, no collision 
region exists and the boundary condition remains u(x,, Y,t)  = 1. )  & is then 
computed by linearly interpolating between the last positive value of u, and 
the first negative one to locate the point where u = 0. Equation (4.2) is then 
used to determine u(x,, Y, t )  for Y > &. 

When h > 1, the collision region moves upstream until, as described earlier, 
uc(O,t) = 1. In the numerical integration, x, is allowed to move upstream by 
altering the computational procedure in the following manner: after u, ( Y ,  t )  
has been generated at x = x, a t  the new time level, the tangential velocity at 
Y = 0 is extrapolated one grid point further upstream by computing 

U" zz u(x,-A~,O,t) = 2 u ( x , , O , t ) - ~ ( x , + A x , O , t ) .  

If u* < - 1, the extent of the integration domain is increased by adding an 
additional column of grid points one grid interval upstream of the present 
location of x,. The numerical integration now requires the profile for uc( Y ,  t )  at 
this new location for x,, which is provided the first time simply by linearly 
extrapolating the entire column from downstream. It should be emphasized, of 
course, that the procedure adopted here is not meant to model accurately the 
transient behaviour of the collision region, but rather to devise a computationally 
efficient scheme for converging to a steady-state solution for the original moving- 
wall boundary-layer problem. 

The techniques described above allow the inviscid collision region to change 
both its structure in Y and its position in x until a steady state is achieved which 
is consistent with the solution to the boundary-layer equations downstream of x,. 
In  generating these solutions, 61 grid points were used in the transverse direction 
and the thickness L of the integration domain was held a t  L = 6 for h < 1, but 
was increased to L = 10 for h > 1 to account for the observed greater boundary- 
layer thicknesses. The time step and tangential grid size were specified in the 
same manner as described in $2 and the same small damping term was incor- 
porated to maintain stability. 

The steady-state streamline patterns obtained from the numerical solutions 
for h = 0.5 and h = 1.0 are presented in figures 6 (a )  and ( b ) .  Here, only the closed- 
streamline regions adjacent to the plate are depicted, and the heavy solid line 
along the upstream edge of the region of closed streamlines denotes the location 
of the collision region. As h increases, the region of closed streamlines grows in 
thickness and the vortex centre moves upstream until at h = 1 it has just reached 
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FIGURE 6. The structure of the closed-streamline region in the boundary 
layer when (a) h = 0.5, ( b )  A = 1.0 and (c )  A = 2.0. In ( c ) ,  x8 = -0.9. 
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A* 

FIGURE 7. The dimensionless drag as a function of A. 

the leading edge of the plate, where the collision region is located. Also, as 
expected, the thickness of the collision region vanished within the accuracy of 
the numerical calculations as h+h* from above. 

As h is increased above unity, the point of detachment of the @ = 0 streamline 
moves upstream of the leading edge of the plate and the vortex centre maintains 
its position adjacent to the collision region. To illustrate the flow structure in 
this regime, the closed-streamline region is plotted in figure 6 ( c )  for h = 2. Here 
x, = - 0.9. Note that the region of closed streamlines increases in thickness more 
rapidly over that portion of the flow field which extends upstream from the 
leading edge, a result which can be anticipated by considering the limiting 
solution as h --f 00. I n  this case (which corresponds to U --f 0 with hU fixed), the 
boundary-layer equations have a similarity solution for 0 < x < 1 in which the 
boundary-layer thickness grows in the upstream direction from the trailing edge 
x = 1 and is proportional to (1 -x)+ (Sakiadis 1960). Far upstream of the plate 
(x < 0), the flow again has a similar form which corresponds to the two- 
dimensional jet solution. Here the jet is created by the fluid forced upstream by 
the negative surface velocity, and the boundary-layer thickness becomes 
proportional to ( - x ) f .  Thus, for values of h in the range 1 < h < co, the separated 
bubble should grow more rapidly upstream of the plate than adjacent to it, and 
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for large values of A, the recirculating region for x < 0 should thicken according 
to ( - x)%. As seen in figure 6 (c), the solution for h = 2 conforms qualitatively to 
this behaviour. 

The dimensionless drag R-*D on the plate for the solutions with positive h is 
plotted in figure 7. As h increases from zero, the drag first decreases and then 
begins to increase for h > 0.3541. Reasons for the decrease in drag for 
0 < h < 0.3541 were presented in I. (The drag computed here for 0 < h < 0.3541 
is slightly different from that obtained in I, where i t  appeared that the drag 
began to increase when h exceeded a value of about 0.25. The earlier result was, 
however, influenced by a shear stress profile for h = 0.3, shown in figure 5 of I, 
which was slightly in error.) The drag profile can be compared with the asymptotes 
for h -+ 0 and h -+ 00, which are also included in figure 7. As h --f 0 the drag is given 
by the Blasius solution as 0.664, while for h -+ 00 it  becomes 0.89h4. Evidently, 
for h = 2, the value of the drag is already close to that given by the asymptotic 
solution for h 9 1. 

The solutions presented above provide a consistent description of the boun- 
dary-layer flow structure in the range A* < h < co, where previously even a 
qualitative understanding of its features had been lacking. Here, the flow field 
differs from that of a conventional boundary layer in that an inviscid collision 
region is present in the vicinity of the point of detachment in which the reverse 
boundary-layer flow is turned in the direction of the mainstream. These solutions, 
together with those of $2, describe then the flow over the entire range 0 < h < 00 

for the moving-wall boundary-layer problem under consideration. 
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